Теория происхождения Луны (6 фото). Как появилась Луна: Три гипотезы появления Луны около Земли Гипотезы возникновения луны версии

Вот уже 46 лет прошло со дня первой высадки человека на Луне. Мы все видели эти удивительные кадры и знаем, что в "официальной" истории покорения Луны человечество не встретило там следов инопланетного происхождения.

Но все ли так верно, как об этом событии пишут в учебниках и говорят в сопутствующих передачах? Что на самом деле произошло в тот исторический день? Могли ли астронавты повстречать на лунной поверхности признаки инопланетян? И как вообще появилась Луна у Земли?

Ответ на многие вопросы знает «Теория заговора» о Луне, которая сохраняется вот уже сорок пять лет после первого визита человека на Луну. Некоторые полагают, что высадки на Луну вообще никогда не состоялось - это лишь киношная постановка, - хотя и ничем не оправданная версия.

Другие считают, что люди действительно были на Луне, но во время изучения спутника столкнулись с чем-то ужасным, неземным и пугающим. Это было как своего рода предупреждение землянам - держитесь отсюда подальше! Так что же такое Луна?...

1. Как появилась Луна.

Согласно мифологии, около 4,5 миллиарда лет назад в нашей Солнечной системе произошла планетарная катастрофа. Якобы в молодой ещё системе, планеты только занимали свои основные орбиты вокруг Солнца - формирование ещё не закончилось и орбиты планет были неустойчивы.

В один из дней орбитальные пути двух планет пересеклись - объект, позже названный как Тейя, столкнулся с Землей. Титанические массы планет сошлись в едином ударе. Согласно этой версии - общепринятой - в результате катастрофы из Земли была вырвана огромная часть её тела.

Разогретая ударом часть Земли, бесформенный и пластичный кусок породы, не был притянут силой гравитации Солнца. Оторванный кусок отлетев на некоторое расстояние был пленен силой гравитации Земли и стал вращаться на ее орбите. Медленно остывая и дрейфуя на орбите он постепенно приобретал нынешнюю форму, при этом по "пути" подхватывая маленькие кусочки разбившихся планет.

Но что любопытно - куда после столкновения подевалась Тейя? Ведь гипотеза появления Луны говорит - наш спутник это отколовшаяся часть Земли. О том, куда исчез второй участник столкновения ничего неизвестно. Разве что в момент удара Тейя просто рассыпалась. Как то нелогично предположить, что Тейя "улетела" в пространство, а вот Луна "зацепилась" за орбиту материнской планеты.

2. Появление Луны, часть вторая.

Нет никаких сомнений в том, что окружающее нас пространство (Галактика, Вселенная) обитаемо. Глядя на количество звёздных миров лишь одной галактики Млечный путь, можно предположить, что существует несколько цивилизаций, чьи космические корабли могли потерпеть кораблекрушение на Луне.

Но ситуация интересна тем, что и сама Луна в свою очередь тоже может быть космическим кораблем. Посмотрите, уже сейчас человечество ищет планеты, чей климат и экология лежат в зоне комфорта для проживания кислородной жизни. В тоже время, земная цивилизация ещё очень молода, но уже делает робкие попытки освоить и колонизировать планеты своей системы. В этом лежит не только исследовательский смысл, но и решение проблемы ресурсов и перенаселения родной планеты. К тому же, непрактично складывать все яйца в одну корзину – гибель Земли означает и гибель человечества.

Что если, продолжая развивать эту тему предположить, что "кто-то" какое-то время назад уже пытался решить задачу расселения путем колонизации других миров? Вполне допустима та мысль, что разумная жизнь на планетах возникла не сразу и вдруг - тем более далеко лежащих друг от друга планетах. Тогда разумно и другое - какая-то цивилизация скажем из соседней звездной системы, могла достигнуть наших нынешних технологий еще миллионы или более лет назад.

Обнаружив в нашей системе планету с пригодными для жизни условиями, поселенцы - хотя не исключено, что и беженцы, - отправились сюда на космическом корабле для расселения собственной цивилизации. Сейчас нам эта космическая баржа известна как Луна.

Скорее всего, легенда основана на реальном событии, инопланетная станция действительно врезалась в Землю. Для перемещения Станции-Луны на огромные расстояния в космосе, вероятно использовались червоточины (кротовые норы), однако погрешность выхода на окраине системы была достаточно велика, и корабль вышел вблизи планет. Но скорее всего, это был вообще экспериментальный полёт корабля сквозь червоточину, и видимо он же последний.

Инопланетная станция на орбите Земли.

О том, что эксперименты с подпространством были прекращены, нам подсказывает тот факт, что наши соседи по космическому дому в нашей известной истории, не заходят к нам в гости (отбросим мифологию и конспирологию). Повреждения ли корабля были серьезны, расстояние ли сказывалось, но связь станции со своим домом была утеряна. Однако жизнь на станции не погибла.
После катастрофы столкновения, сотрудники станции, разобравшись в ситуации, предприняли попытку ускорить процесс терраформирования перспективной в плане заселения планеты - на этот момент на Земле климат был ещё тяжёлым для жизни.

Инопланетяне посеяли на Земле первые растения, отправили на планету первые ростки жизни. Однако сами представители инопланетной цивилизации, скорее всего не сумели адаптироваться к условиям нового дома и вскоре вымерли. Но жизнь на планете уже взяла начало, стала расти и развиваться.

А тем временем, разбитый и опустевший корабль (Луна) потихоньку собирал на себя пыль протопланетного облака. Железная станция притягивала на себя мелкие камешки и частицы, и чем больше станция обрастала "жиром" тем больше становилась ее масса, и все больше и больше космических объектов падало на образовавшуюся Луну. Так сформировался внешний вид спутника Земли известный нам и поныне.

Родительская цивилизация, так и не дождавшись ответа от поселенцев, сочла эксперимент неудачным. И либо нашла иные варианты расселения - скажем открылся иной уровень существования, либо вовсе забросила дело освоения далеких звёздных систем.

3. Как появилась Луна, часть третья. Земляне.

Библия, или иные священные писания конечно отражают ход истории. Они говорят об Адаме и Еве, о садах Эдема, о жизни в райских кущах. Но совершенно не служат источником информации, что же было до этого времени. Хотя и содержат в себе информацию о . При этом все пришельцы с небес непременно прибывали в колесницах окруженных клубами огня и дыма - ну прям совсем как люди в своих космических ракетах.

Существует несколько древних изображений, где рядом с динозаврами находится человек. Как относится к этому не известно, академическая наука прямо говорит - человека в те времена не было! А вот изображения есть! Причём непонятно, где древний художник наскальной живописи добыл информацию о динозаврах, если эти знания ему никто не мог дать - человека то не было, а значит и слухи никто не распускал, и гипотез не строил.

В сущности, для зарождения и развития цивилизации до крепких технологий требуется не так уж и много времени. Гораздо меньше требуется времени для гибели цивилизации (для примера: такие культуры как майя, и атланты, развились очень быстро, но и быстро угасли).

Ничто не мешает нам предположить, что некоторый промежуток времени тому назад, да хотя бы и в эпоху динозавров, на Земле уже проживала разумная цивилизация. Причём развивались они не только в области "железных" технологий, но и в области природных возможностей организма. Последнее им давало возможность сосуществовать совместно с динозаврами без войны на истребление.
На каком-то витке своего развития, эта древняя и занесенная ныне ветром забвения цивилизация вышла в космос.

Наконец земная цивилизация прошлых лет доросла до создания орбитальных станций - так появилась Луна у Земли. К этому времени Марс был уже обитаем, и также обзавелся орбитальным комплексом - . Станции давали огромное преимущество в постройке и запуске космических кораблей к соседним звездным мирам.

Ничто не вечно под Луной.

Так, согласно гипотезе могла бы стартовать космическая экспансия землян. И она состоялась. Еще миллионы лет назад земляне выбрались в космос и отправились к другим мирам в глубинах космоса. На этом трудном пути знания о мироздании росли и встречались жители других миров. Но свой родной дом уже горел.
Разум, интеллект и технологии - кажется, это крепкий фундамент для роста и развития цивилизации. Казалось бы, что ещё надо для торжества жизни? Однако этого мало, нужна ещё терпимость к ближнему, человеколюбие и знание сколь бесценным даром является жизнь. - Иначе вражда, ненависть, пожар войны, смерть и гоняемый ветром пепел прошлого.

Так и случилось в далёком прошлом в истории двух соседних планет, Земли и Марса. О страшной битве с оружием в тысячи раз ярче Солнца нам сообщает все та же мифология. Сейчас уже неважно, что послужило причиной конфликта и кто начал первым. Есть только мертвая марсианская пустыня и станция Фобос - жизни здесь больше нет. Земле в этом смысле повезло больше - здесь под опечаленным взглядом станции Луна жизнь возродилась.

Однажды потомки тех землян вернулись на Землю - помните библейских богов в огнедышащих колесницах? - общались с человечеством, щедро делясь знаниями. Но все же однажды они решили, что время "подарков" прошло - человечество должно расти само. С той поры они лишь присматривают за нами - возможно как за малыми и нерадивыми чадами, но все же своими близкими детьми.

Сейчас потомки Земли они же наши предки, туристами прилетают в Солнечную систему - посмотреть на жизнь родной планеты - нам они известны как .

4. Луна – инопланетная станция, опасности.

Нельзя не подумать о том, что какие-либо технологические изделия не «от мира сего» могут представлять опасность для нашего мира. И это касается не только предположения, что Луна могла прибыть в нашу систему из другого мира. Это равно относится и к тому, что на Луну как на естественный объект системы мог упасть космический корабль из другой звездной системы. Что от этого можно ожидать?

Ожидать от находки «залетевшей» к нам из другой звездной системы можно технологического скачка, но можно приобрести и множество проблем. - На объекте чужой цивилизации могут быть вредоносные для нас вирусы, или, к примеру, последний пилот запрограммировал Луну-станцию на отправление в свою систему при появлении на ней биологического объекта – что создаст на Земле серьезные проблемы.

Несколько лет назад в сети появились изображения с космическим кораблем чужой цивилизации, лежащим на Луне. Как бы там ни было с изображением, но исключать вероятность этого нельзя. Земные автоматические станции также оживляют местность нескольких планет своими обломками.
Да, факт остается фактом, 46 лет назад земляне были на Луне, но реальная жизнь на темной стороне Луны остается малоизвестной, наверное, это не для телевидения.

Самая главная загадка Луны заключается в ее происхождении. Мы до сих пор не знаем, откуда взялась Луна. Но гипотез происхождения Луны предостаточно. Давайте рассмотрим их.

Но сначала

О Луне

У Земли есть только один спутник – Луна. Он движется вокруг Земли по орбите на среднем расстоянии от нее в 376 284 км.

Сила тяготения Земли постепенно замедляет вращение Луны вокруг своей оси, так что теперь Луна обходит весь свой путь вокруг Земли точно за такое же время, какое занимает один ее оборот вокруг своей оси. Такое синхронное вращение означает, что мы, глядя на Луну с Земли, всегда видим только одну ее сторону. Обратную сторону Луны удалось увидеть только космонавтам и космическим кораблям.

Поскольку Луна движется вокруг Земли, Солнце освещает различные доли ее поверхности.

Посмотрите на картинку. Вы видите на ней, как выглядит Луна из одной и той же точки Земли, находясь в разных точках своей орбиты: лунный серп, половина лунного диска (первая четверть), прибывающая Луна, полнолуние, убывающая Луна, половиналунного диска (последняя четверть), лунный серп.

Луна имеет очень большой размер относительно Земли. Диаметр Луны на экваторе (в средней части) равен 3475 км, это чуть меньше четверти диаметра Земли. Поэтому некоторые астрономы даже считают, что систему Земля-Луна надо рассматривать как двойную планету.

Но вернемся все-таки к вопросуо происхождении Луны.

Гипотезы о происхождении Луны

Гипотеза первая

На ранних стадиях существования Земли у нее была система колец вроде той, что имеется у Сатурна. Возможно, Луна образовалась из них?

Гипотеза вторая (центробежного разделения)

Когда Земля была еще совсем юной и состояла из расплавленных пород, она вращалась так быстро, что из-за этого растянулась, приобрела форму груши, а затем верхняя часть этой «груши» оторвалась и превратилась в Луну. Эту гипотезу в шутку называют «дочерней».

Гипотеза третья (столкновения)

Когда Земля была молодой, она подверглась удару какого-то небесного тела, размер которого составлял половину размера самой Земли. В результате этого столкновения огромное количество вещества было выброшено в космическое пространство, а впоследствии из него сформировалась Луна.

Гипотеза четвертая (захвата)

Земля и Луна образовались независимо, в разных частях Солнечной системы. Когда Луна проходила близко к земной орбите, она была захвачена гравитационным полем Земли и стала её спутником. Эту гипотезу в шутку называют «супружеской».

Гипотеза пятая (совместного образования)

Земля и Луна образовались одновременно, в непосредственной близости друг от друга (в шутку - «сестринская» гипотеза).

Гипотеза шестая (многих лун)

Несколько маленьких лун были захвачены гравитацией Земли, затем они столкнулись друг с другом, разрушились, и из их обломков образовалась нынешняя Луна.

Гипотеза седьмая (испарения)

Из расплавленной протоземли были выпарены в пространство значительные массы вещества, которое затем остыло, сконденсировалось на орбите и образовало протолуну.

Каждая из этих гипотез имеет свои «за» и свои «против». В настоящее время основной и более приемлемой считается гипотеза столкновения. Рассмотрим ее подробнее.

Эта гипотеза была предложена Уильямом Хартманом и Дональдом Дэвисом в 1975 году. По их предположению, протопланета (её назвали Тейя ) размером примерно с Марс столкнулась с прото-Землей на ранней стадии её формирования, когда Земля имела примерно 90 % нынешней массы. Удар пришёлся не по центру, а под углом, почти по касательной. В результате большая часть вещества ударившегося объекта и часть вещества земной мантии были выброшены на околоземную орбиту. Из этих обломков собралась прото-Луна и начала обращаться по орбите с радиусом около 60 000 км. Земля в результате удара получила резкий прирост скорости вращения (один оборот за 5 часов) и заметный наклон оси вращения.

Почему именно эта гипотеза о происхождении Луны считается основной? Она хорошо объясняет все известные факты о химическом составе и строении Луны, а также и физические параметры системы Луна-Земля. Первоначально большие сомнения вызывала возможность столь удачного соударения (косой удар, невысокая относительная скорость) такого крупного тела с Землей. Но затем было предположено, что Тейя сформировалась на орбите Земли. Такой сценарий хорошо объясняет и низкую скорость столкновения, и угол удара, и нынешнюю, почти точно круговую орбиту Земли.

Но и у этой гипотезы есть свои уязвимые места, как, впрочем, у каждой гипотезы (ведь ГИПОТЕЗА в переводе с древнегреческого обозначает «предположение»).

Так вот, уязвимость этой гипотезы состоит в следующем: у Луны очень маленькое железо-никелевое ядро - оно составляет всего 2-3 % от общей массы спутника. А металлическое ядро Земли составляет около 30 % массы планеты. Для объяснения дефицита железа на Луне приходится принимать допущение, что ко времени столкновения (4,5 млрд. лет назад) и на Земле, и на Тейе уже выделилось тяжёлое железное ядро и образовалась лёгкая силикатная мантия. Но однозначных геологических подтверждений этому допущению не найдено.

И второе: если бы Луна так или иначе оказалась на орбите Земли в столь далёкое время и после этого не претерпевала существенных потрясений, то на её поверхности, по расчётам, успел бы скопиться многометровый слой оседающей из космоса пыли, что не было подтверждено при посадках космических аппаратов на лунную поверхность.

Итак…

До 60-х годов XX века главными гипотезами происхождения Луны были три: центробежного отделения, захвата и совместного образования. Одной из главных целей американских лунных экспедиций 1960-1970 годов было найти доказательства одной из этих гипотез. Первые же полученные данные обнаружили серьёзные противоречия со всеми тремя гипотезами. Но во время полётов «Аполлонов» ещё не существовало гипотезы гигантского столкновения. Именно она и является сейчас господствующей .

Одним непреложным фактом является то, что Луна движется вокруг Земли. Она улыбается нам в ночном небе, но согласно всему, что известно науке, этого не должно быть.

Древние греки были большими собирателями знаний и исследователями законов природы. В V веке до н. э. Демокрит, сделал предположение, что темные отметины на лунном диске могут быть горами. Немного поздней Евдокс из Книда, который был астрономом и математиком, вычислил Саросский цикл затмений и таким образом смог предсказывать их наступление.

Около 260 года до н. э. другой грек по имени Аристарх изобрел способ измерения размера Луны и ее расстояния от Земли. Его расчеты оказались неправильны, но крупный математик и астроном Гиппарх с острова Родос справился с этой задачей через 100 лет.

В конце I века н. э. Плутарх написал короткое сочинение под названием «О лике лунного светила», где предположил, что темные отметины на Луне являются глубокими впадинами, не отражающими солнечный свет. Он считал, что на Луне есть горы и речные долины, и даже высказывал предположения о ее обитаемости.

В конце XVI века гениальный Галилео Галилей из Пизы, один из самых блестящих ученых эпохи Возрождения, проводил эксперименты с маятниками и падающими телами, изучал законы оптики и занимался всем, что захватывало его воображение, но, самое главное, большую часть своей зрелой жизни Галилей был ревностным астрономом.

Астрономические открытия Галилея были описаны в небольшой книге под названием «Звездные послания», изданной в Венеции в мае следующего года. Они произвели настоящую сенсацию. Кроме всего прочего Галилей утверждал, что Млечный Путь состоит из крошечных звезд и что он увидел четыре небольших спутника Юпитера и горы на Луне. Научные исследования Галилея легко могли пасть жертвой католической церкви, если бы его изображения Луны стали достоянием общественности.

Для объяснения элементов лунного ландшафта, не противоречащего церковным доктринам, в христианских странах предложили целый ряд теорий. Возможно, наибольшей популярностью из них – по крайней мере на протяжении какого-то времени – была теория о том, что Луна является совершенным зеркалом. Выходило что на поверхности Луны люди видели не элементы лунного ландшафта, а отражение элементов земного ландшафта. Никому не пришло в голову, что, потому как Луна вращается вокруг нашей планеты, отметины на лунном диске должны постоянно изменяться, так как Земля под ним не остается неизменной.

Другая гипотеза, принятая в некоторых кругах, заключалась в существовании таинственных испарений между Землей и Луной. Считалось, что образы, присутствовавшие в солнечном свете, отражались от этих «паров». Однако самая популярная теория, не нарушавшая церковную доктрину, гласила, что вариации плотности Луны создают оптические иллюзии, которые нам видны как отметины на лунной поверхности. Это странное объяснение было безопасно, хотя едва ли могло убедить ученых тех времен и определенно не производило никакого впечатления на Галилея.

После Галилея конструкцию телескопов в значительной степени усовершенствовали, и всем, кто изучал Луну, стало ясно, что она представляет из себя сферу со скалистой и неровной поверхностью. По мере того как церковь постепенно утрачивала свою власть над наукой, многие старые представления о Луне становились неприемлемы. Но никто не имел представления, откуда взялась Луна и почему она движется именно по такой орбите вокруг Земли.

Первая теория происхождения Луны

Была выдвинута в XIX веке Джордж Дарвин, сын Чарлза Дарвина, автора теории естественного отбора, был известным и авторитетным астрономом, который тщательно изучал Луну и в 1878 году выступил с так называемой теорией разделения. По всей видимости, Джордж Дарвин был первым астрономом, который установил, что Луна отдаляется от Земли. На основе скорости расхождения двух небесных тел Дж. Дарвин предположил, что когда-то Земля и Луна составляли единое целое. В незапамятные времена эта расплавленная вязкая сфера очень быстро вращалась вокруг своей оси, совершая один полный оборот приблизительно за пять с половиной часов.

Дарвин предположил, что в дальнейшем приливное воздействие Солнца стало причиной так называемого разделения: кусок расплавленной Земли размерами с Луну отделился от главной массы и в конце концов занял свое местоположение на орбите. Такая теория выглядела вполне разумно и стала главенствующей в начале XX века. Она подверглась серьезной атаке только в 1920-х годах, когда британский астроном Гарольд Джеф-фрис показал, что вязкость Земли в полурасплавленном состоянии препятствовала бы возникновению достаточно мощной вибрации, которая могла привести к разделению двух небесных тел.

Вторая теория происхождения Луны

Когда-то убедившая ряд специалистов, называлась аккреционной теорией. Она гласила, что вокруг уже сформировавшейся Земли постепенно аккумулировался диск из плотных частиц, напоминающий кольца Сатурна. Предположили, что частицы этого диска в конце концов объединились и образовали Луну. Есть несколько причин, в силу которых такое объяснение не может быть удовлетворительным. Одной из основных является угловой момент движения системы Земля – Луна, который никогда не стал бы таким, как он есть, если бы Луна образовалась из аккреционного диска. Есть также затруднения, связанные с образованием океанов расплавленной магмы на «новорожденной» Луне.

Третья теория происхождения Луны

Появилась приблизительно в то время, когда были запущены первые лунные зонды; она была названа теорией целостного захвата. Предположили, что Луна появилась вдалеке от нашей планеты и стала блуждающим небесным телом, которое просто было захвачено земным тяготением и вышло на орбиту вокруг Земли.

Теперь эта теория также вышла из моды по нескольким причинам. Соотношение изотопов кислорода в горных породах на Земле и на Луне убедительно доказывает, что они появились на одном расстоянии от Солнца, чего не могло быть в том случае, если бы Луна была сформирована в другом месте. Есть также непреодолимые трудности в попытке построения модели, в соответствии с которой небесное тело размером с Луну могло бы выйти на стационарную орбиту вокруг Земли. Такой огромный объект не мог аккуратно «подплыть» к Земле на малой скорости, как супертанкер, швартующийся к пристани; он почти неизбежно должен был врезаться в Землю на большой скорости или пролететь рядом с ней и устремиться дальше.

К середине 1970-х годов все предыдущие теории формирования Луны по разным причинам столкнулись с трудностями. Это привело к созданию практически немыслимой ситуации, когда прославленные эксперты могли публично признать, что они попросту не знают, как или почему Луна оказалась на своем месте. Известный научный автор Уильям К. Хартманн, ведущий ученый Института планетологии в Таксоне, штат Аризона, сказал в своей книге (1986 год) «Происхождение Луны»:

«Ни астронавты „Аполлона“, ни луноходы, ни вся королевская рать не смогли собрать достаточно информации для объяснения условий формирования Луны».

Новая теория происхождения Луны

Из этой неопределенности появилась новая теория происхождения Луны, которая в данный момент считается общепринятой, несмотря на некоторые серьезные вопросы. Она известна как теория «большого столкновения».

Идея возникла в СССР в 1960-х гг. у русского ученого B.C. Савронова, который рассматривал возможность возникновения планет из миллионов астероидов различного размера, называемых планетзималями.

В ходе независимого исследования Хартманн вместе со своим коллегой Д.Дэвисом предположил, что Луна образовалась в результате столкновения двух планетных тел, одним из которых была Земля, а другим – блуждающая планета, размером не уступавшая Марсу. Хартманн и Дэвис считали, что две планеты столкнулись специфическим образом, в итоге произошли выбросы вещества из мантии обоих небесных тел. Это вещество было выброшено на орбиту, где постепенно объединилось и уплотнилось для формирования Луны.

С первого взгляда, у такого предположения имеется много достоинств. В первую очередь оно решает главный вопрос, появившийся после доставки на Землю образцов лунной породы: почему состав Луны так сходен с составом нашей планеты, но только частично?

Анализ лунных пород показал значительное сходство с породами, которые образуют мантию Земли, но Луна намного менее массивна, чем Земля, с учетом их относительного размера (Земля только в 3,66 раза больше Луны, но имеет в 81 раз большую массу). Было понятно, что на Луне нет многих тяжелых элементов, содержащиеся в земных недрах, и теория «большого столкновения» как будто объясняла причину этого явления. Земля и блуждающая планета столкнулись очень необычным образом. Хотя в конечном счете они образовали одну планету, предполагалось, что вначале они столкнулись, разошлись в стороны, а после снова соединились. Компьютерное моделирование показало, что при таких специфических обстоятельствах возможен выброс мантийного материала из-под корового слоя обоих небесных тел.

Хотя эта теория со временем овладела умами, вначале она казалась такой невероятной, что была отвергнута в целом. Однако в дальнейшем исследования показали, что даже такой маловероятный сценарий мог иметь место. В 1983 году состоялось международное совещание в Коне (Гавайские острова), целью которого была попытка решения проблем, связанных с происхождением Луны. Именно на этом совещании теория «большого столкновения» начала завоевывать очки. Собственные размышления Хартманна наряду с мнениями других ученых, присутствовавших на совещании, образовали ядро книги «Происхождение Луны» (1986) под редакцией самого Хартманна.

Между тем некоторые из экспертов создали компьютерные модели, подкреплявшие теорию «большого столкновения». Наиболее убедительной из них была модель доктора Робин Кенап, которая сейчас является заместителем директора департамента космических исследований в Колорадо. Ее научная диссертация была посвящена происхождению Луны и, в частности, теории «большого столкновения». Первоначальные расчеты привели ее к выводу, что предполагаемый удар должен был привести к образованию целого роя мелких спутников, а не одной Луны, но дальнейшее компьютерное моделирование в 1997 году дало возможность создать такой прототип столкновения, результатом которого явилось формирование Луны.

Несмотря на то что теория «большого столкновения» теперь принята большинством специалистов, она вызывает много вопросов. Как признает сама Робин Кенап и другие исследователи, такое мощное столкновение должно было ускорить вращение Земли до уровня, несопоставимого с нынешней ситуацией. Единственный способ решения этой проблемы, по ее мнению, заключается в гипотезе о втором крупном столкновении, названном «большой удар II». На этот раз предполагается, что второе столкновение произошло только спустя несколько тысячелетий после первого, но другой объект нанес удар с противоположного направления и таким образом погасил огромную скорость вращения Земли после первого катаклизма. Такое «сбалансированное» двойное столкновение выглядит крайне маловероятно. Оно больше похоже на жест отчаяния.

Кенап сама недовольна гипотезой «большого удара II» и надеется модифицировать первоначальную теорию таким образом, чтобы она объясняла нынешнюю скорость вращения Земли.

Для того чтобы всерьез относиться к теории «большого столкновения», надо преодолеть еще одно большое препятствие. Когда американские астронавты и советские автоматические зонды доставили горные породы со спутника Земли, их подвергли различным анализам. Экспериментальный факт, покончивший с теорией «гравитационного захвата», вызывает большое сомнение и в теории «большого столкновения». Было установлено, что соотношение изотопов кислорода в земных и лунных породах практически идентично. Этот факт имеет серьезные последствия: соотношение может быть идентично лишь в том случае, если Луна и Земля образовались на одинаковом расстоянии от Солнца. Это означает, что планета размером с Марс должна была двигаться по одной орбите с Землей и что она неким образом существовала на протяжении многих миллионов лет до столкновения.

Вероятность такого рода ситуации ничтожно мала и создает другие затруднения. Нынешний наклон земной оси на 23° по отношению к плоскости ее орбиты вокруг Солнца принято считать результатом катастрофического столкновения, но любое небесное тело размером с Марс, которое двигалось бы по орбите, сходной с орбитой нашей планеты, не могло иметь достаточного момента движения, чтобы так сильно наклонить ось вращения Земли. Или блуждающая планета появилась из-за пределов Солнечной системы и, следовательно, двигалась с чрезвычайно большой скоростью, или она должна быть по крайней мере в три раза больше Марса, что не вписывается ни в какую компьютерную модель.

Некоторые другие проблемы перечислялись Джеком Дж. Лиссауэром, известным ученым из Эймсовского центра НАСА, в его статье, написанной для журнала «Нейчур» в 1997 году. Говорят, что Лиссауэр любил цитировать шутливое замечание другого ученого, Ирвина Шапиро из Гарвардского центра астрофизических исследований: «Лучшее объяснение для Луны – это ошибка наблюдения. Ее вообще не существует!».

В своей статье Лиссауэр сослался на результаты последних исследований, которые показали, что большая часть материала, выброшенного при ударе, должна была бы упасть обратно на Землю. С его слов:

«Процесс аккреции вещества в „лунном диске“, образовавшемся после удара, не мог происходить с большой эффективностью. Для формирования Луны на орбиту должно было быть выброшено гораздо большее количество материала и на большее расстояние от Земли, чем считали раньше».

Лиссауэр также придерживается мнения, что размер блуждающей планеты должен был бы в значительной степени превышать первоначально предполагаемый, но указывает, что трудно понять, каким образом можно было погасить дополнительный угловой момент движения после такого мощного столкновения.

Три других ученых, Ружичка, Снайдер и Тейлор, подошли к проблеме по другому и проанализировали биохимические данные, а потом сопоставили их с теоретическими расчетами. После тщательного изучения они пришли к выводу: «Данные геохимического анализа не дают основания для поддержки гипотезы большого столкновения или ударного выброса материала».

Этот вывод показал, что красивая теория безнадежно расходится с экспериментальными данными. Ученые добавляют: «Эта гипотеза появилась не столько из-за ее теоретических достоинств, сколько из-за очевидных динамических или геохимических недостатков других теорий». Говоря по другому, хотя в теории «большого столкновения» больше дыр, чем в старом решете, ученые продолжают цепляться за нее просто потому, что не было найдено другого логичного объяснения. Из всех невероятных объяснений это оказалось менее невероятным.

Теория «большого столкновения» дискредитирована, помимо ряда причин, неспособностью объяснить аномалии. Она не может объяснить необычные соотношения между Луной и Солнцем или между Луной и Землей. Конечно, Луна может по чистой случайности быть ровно в 400 раз меньше Солнца и занимать орбиту на расстоянии 1/400 между Землей и Солнцем, но вероятность такого совпадения в буквальном смысле астрономически мала.

В пропорциональном отношении к планете-хозяйке размер Луны больше, чем у любого другого спутника Солнечной системы, за исключением Харона, спутника Плутона, который составляет больше половины диаметра этой планеты. Но эти два небесных тела, в сущности, являются двойной планетой или, возможно, астероидами, вращающимися вокруг общего центра масс на близком расстоянии, хотя считается, что они имеют разное происхождение.

У Меркурия и Венеры вообще нет спутников. У Марса есть два спутника, но у них крошечные размеры по сравнению с ним.

Тщательное изучение многих образцов лунной породы, доставленной американскими миссиями «Аполлона» и советскими беспилотными зондами, преподнесло один из самых больших сюрпризов. Было отмечено, что старейшие породы, собранные на Луне, имеют в значительной мере более древний возраст, чем любые породы, обнаруженные на нашей планете. Возраст самых древних пород на Земле составляет приблизительно 3,5 млрд. лет, тогда как некоторые образцы лунного грунта демонстрируют возраст около 4,5 млрд. лет, что очень близко к оценке возраста нашей Солнечной системы. Радиоизотопный анализ образцов метеоритов неизменно дает возраст примерно 4,6 млрд. лет.

Но даже в этих породах имеется такое же соотношение изотопов кислорода, как в земных породах. Это служит еще одним указанием, что Луна находилась на своем нынешнем расстоянии от Солнца в течение невероятно долгого времени. В настоящее время этот факт не имеет убедительных объяснений.

Наши собственные, почти случайные открытия в связи со специфическими соотношениями между Землей, Солнцем и Луной, привели нас к глубокой переоценке последних теорий, связанных с Луной и ее происхождением. Мы были поражены своими находками. Луна больше, чем можно было ожидать, явно старше, чем должно быть, и имеет гораздо меньшую массу, чем должно быть. Она занимает такую необычную орбиту, что все существующие объяснения полны трудностей и противоречий, и ни одно из них нельзя считать вполне убедительным. Мы осознали, что многие уважаемые специалисты во всем мире имеют значительные сомнения по поводу современных теорий о происхождении Луны, которые, они готовы огласить публично.

Независимо от утверждений сторонников теории «большого столкновения» вполне очевидно, что их выводы далеки от истины. Если воспользоваться цитатой из Уинстона Черчилля, Луна остается «загадкой, облаченной в тайну внутри еще большей загадки».

В начале этой недели ученые-астрофизики из Института геофизики Парижа опровергли версию происхождения Луны , которая до сих пор считалась наиболее вероятной. Согласно этой гипотезе, примерно 4,5 миллиардов лет назад совсем еще юная Земля столкнулась с протопланетой Тейей , в результате чего образовалась Луна.

Компьютерные симуляции, проведенные специалистами, поставили под сомнение эту версию, а заодно и многие другие наши представления о происхождении ближайшего к Земле космического тела.

Редакция «МИР 24» выбрала основные версии происхождения спутника и вместе со специалистами взвесила «за» и «против» популярных гипотез.

Версия №1: одно гигантское столкновение

Модель ударного формирования Луны оставалась доминирующей в науке последние три десятилетия. Астрофизики приняли ее почти единогласно после того, как в декабре 1972 года лунный модуль корабля «Аполлон-17» в ходе последней высадки на спутник доставил на Землю более 110 кг лунных пород.

Анализ химического и изотопного состава грунта привели ученых к мысли о том, что на раннем этапе формирования Солнечной системы Земля могла столкнуться с крупным небесным телом - протопланетой, габариты которой были соразмерны сегодняшнему Марсу, то есть примерно 10,7% от массы Земли.

«Для обоих небесных тел это событие было катастрофическим, и материал, который был выброшен в результате этого столкновения, многие тысячелетия частично оставался на орбите Земли, из-за чего в результате эволюционного сжатия и образовался земной спутник», - рассказывает доктор физико-математических наук, старший научный сотрудник Института космических исследований РАН Александр Родин.

Имена небесным телам по традиции даются греческие, мифологические. Поэтому гипотетическая протопланета получила название в честь одной из сестер-титанид Тейи, которая, по верованиям древних греков, была матерью Селены (Луны). Связь между Землей и спутником оказалась настолько сильной, что со временем Луна начала вызывать на Голубой планете приливы и отливы.

Это в свою очередь сформировало на мокрой тверди условия для появления первых элементов биологической жизни (нуклеотидов) из простейших азотистых соединений, смеси фосфата и углеводов. Так под воздействием лунной активности и солнечного света на земной поверхности образовалась первая «лаборатория» для формирования будущей жизни.

В пользу теории мегавзрыва говорит тот факт, что ядро земного спутника слишком мало для планеты, которая сформировалась одновременно с Землей (радиус ядра Луны около 240 километров). Кроме того по своему составу Луна куда однородней нашей планеты. Вроде бы все склоняло ученых к той точке зрения, что причина рождения Луны протокрасавица Тейя.

Подозрения в справедливости такой красивой гипотезы возникли у астрономов Парижского института геофизики. Смущали химические составы земной мантии и лунного грунта. Что-то там было не так. В результате парижские астрономы запустили многолетний эксперимент, который только что завершился.

В течение этого эксперимента они провели 1,7 млрд компьютерных симуляций столкновения Земли и Тейи и выяснили, что масса гипотетического небесного тела, с которым столкнулась Земля, не могла составлять больше 15% от массы нашей планеты.

В противном случае, земная мантия содержала бы в разы больше никеля и кобальта, а из лунного грунта уже давно испарились бы легкие изотопы радиоактивных элементов, которые присутствуют в ней сейчас, например, изотоп гелия-3.

Версия №2: теория множественных бомбардировок

«Последнее исследование французов подтверждает предположение о том, что столкновение было не одно - их было множество, - объясняет доктор Родин, - Будущий материал для формирования спутника накапливался миллионы лет на земной орбите, а сами тела-бомбардировщики были гораздо меньше, чем гипотетическая Тейя».

Однако, по мнению ученого, эпохального переворота это открытие не совершило. Последние десятилетия Луна остается не только самым изученным, но и самым активно изучаемым объектом Солнечной системы. Ежегодно в распоряжение ученых поступают все новые и новые данные, которые опровергают ту или иную из существующих гипотез.

«Компьютерные симуляции помогают нам лишь смоделировать те или иные условия. Примерно так же работают метеорологи, определяя погоду на ближайшее время. Но мы прекрасно понимаем, что даже прогноз на завтра и тот может быть неверным. Что же говорить о таких глобальных событиях, как зарождение живой материи, формирование Луны или Земли», - отметил ученый.

С ним согласен и доктор физико-математических наук, заведующий отделом исследования Луны и планет института им. П. К. Штернберга МГУ Владимир Шевченко.

По его словам, французских астрофизиков на несколько лет опередил российский ученый, директор Института геохимии имени В. И. Вернадского Эрик Галимов, который проанализировал гипотезу о протопланете Тейе и одним из первых в мировой науке смог аргументированно ее опровергнуть. Правда, чисто теоретически. Теперь его теория получила экспериментальное подтверждение.

Версия №3: «сестринская» гипотеза

Гипотеза, к которой сегодня склоняются многие российские ученые, звучит так: Луна и Земля сформировались относительно одновременно из единого газопылевого облака. Это произошло около 4,5 млрд лет назад, что подтверждают данные радиоизотопной датировки метеоритных образцов, так называемых хондритов.

«Зародыш» Земли притянул к себе максимальное число частиц в зоне их доступности, а из оставшихся фрагментов на орбите сформировался меньший по размерам, но схожий по химическому составу спутник.

«Эта теория снимает сомнительные вопросы относительно геохимических показателей лунного грунта, - объясняет Владимир Шевченко. - Если бы мегаудар имел место, Луна должна была бы содержать то же вещество, из которого Земля состояла на момент и была бы куда больше похожа на Землю, чем сейчас», - резюмирует профессор.

Правда, такая красивая гипотеза об общем облаке-прародителе многого не объясняет. Например, того, почему лунная орбита не лежит в плоскости земного экватора и почему ее железно-никелевое ядро сформировалось столь миниатюрным по сравнению с нашим.

Версия №4: планета-пленница, или «супружеская» гипотеза

Одна из самых любопытных гипотез, имеющих при этом наименьшее число доказательств, - гипотеза о том, что Луна изначально образовалась как независимая планета Солнечной системы. В результате отклонения небесного тела от орбиты (так называемых пертурбаций) планета, так сказать, "сбилась с курса" и вышла на эллиптическую орбиту, пересекающуюся с Землей.

При одном из сближений Луна попала в поле действия земной гравитации и превратилась в ее спутник.

Американских астрономов под руководством Томаса Джексона Си эта теория заинтересовала отнюдь не из академических соображений. Дело в том, что легенды древнего африканского народа догонов повествовали о временах, когда на ночном небе еще не было второго светила - Луны.

Несмотря на то, что теория не вписывалась в «Большую тройку» академических гипотез о происхождении спутника, ее всерьез обсуждала группа ученых под руководством Сергея Павловича Королева при проектировке спускаемой автоматической станции.

Ученым предстояло «вслепую» решить, каким образом была сформирована Луна. От их выводов зависел успех прилуления станции. Ведь если Луна вращается вокруг Земли миллиарды лет, без плотной атмосферы на ее поверхности должен был скопиться многометровый слой опадающей из космоса пыли.

Если это действительно так, станция, предназначенная для посадки на Лунную твердь, просто бы утонула.

Предположение о том, что Луна была захвачена Землей сравнительно недавно, ученым явно нравилось больше. В этом случае ее поверхность должна была быть все еще твердой. Поэтому и аппарат для посадки решили рассчитывать именно на этот сценарий.

Правда, противоречий у этой теории больше, чем у других версий происхождения спутника. Например, почему у изотопов кислорода на Луне и Земле наблюдается такая идентичность?

Или почему Луна вращается в одном направлении с Землей, тогда как луны, захваченные Юпитером - Ио, Европа, Ганимед и Каллисто - вращаются в ретроградном, то есть противоположном от Юпитера направлении.

Как бы то ни было, даже относительно «складные» и «привлекательные» гипотезы не дают точного описания того, как именно на земном небосклоне возникло ночное светило. Впрочем, такие нестыковки наблюдаются при описании любого другого физического явления такого масштаба, отмечает Александр Родин.

Каждое новое открытие, даже проведенное в земных условиях, может в любой момент поставить под сомнение любую «устоявшуюся» в науке гипотезу. Даже о происхождении Земли - не то что ее спутника.

Надежда Сережкина


"ЗиВ" №6/2005

академик, ГЕОХИ РАН

Проблема происхождения Луны обсуждается в научной литературе уже более ста лет. Ее решение имеет большое значение для понимания ранней истории Земли, механизмов формирования Солнечной системы, происхождения жизни. До настоящего времени была широко распространена гипотеза возникновения Луны в результате столкновения Земли с крупным телом, размером с Марс. Эта гипотеза, выдвинутая двумя группами американских ученых, удачно объясняла дефицит железа на Луне и динамические характеристики системы Земля – Луна. Однако в дальнейшем она встретилась с трудностями в объяснении некоторых факторов, которые обсуждаются в данной статье. В последние годы российские ученые выдвинули и обосновали новую концепцию образования Земли и Луны – в результате фрагментации пылевого сгущения.

Несколько слов из истории проблемы

Из планет внутренней части Солнечной системы, которые включают Меркурий, Венеру, Землю и Марс только Земля имеет массивный спутник – Луну. Спутники есть также у Марса: Фобос и Деймос, но это небольшие тела неправильной формы. Больший из них, Фобос, в максимальном измерении всего 20 км, в то время как диаметр Луны 3560 км.

Луна и Земля обладают разной плотностью. Это вызвано не только тем, что Земля имеет большие размеры и, следовательно, ее недра находятся под б?льшим давлением. Средняя плотность Земли, приведенная к нормальному давлению (1 атм) – 4.45 г/см 3 , плотность Луны – 3.3 г/см 3 . Различие обусловлено тем, что Земля содержит массивное железо-никелиевое ядро (с примесью легких элементов), в котором сосредоточено 32% массы Земли. Размер ядра Луны остается невыясненным. Но с учетом низкой плотности Луны и ограничения, налагаемого величиной момента инерции (0.3931) Луна не может содержать ядро, превосходящее 5% ее массы. Наиболее вероятным, исходя из интерпретации геофизических данных, считается интервал 1–3%, то есть радиус лунного ядра составляет 250–450 км.

К середине прошлого века сформировалось несколько гипотез происхождения Луны: отделение Луны от Земли; случайный захват Луны на околоземную орбиту; коаккреция Луны и Земли из роя твердых тел. Эта проблема до недавнего времени решалась специалистами в области небесной механики, астрономии и планетофизики. Геологи и геохимики в ней участия не принимали, поскольку о составе Луны до начала ее изучения космическими аппаратами ничего не было известно.

Уже в 30 гг. прошлого столетия было показано, что гипотеза отрыва Луны от Земли, выдвигавшаяся, кстати, Дж. Дарвиным, сыном Ч. Дарвина, несостоятельна. Суммарный вращательный момент Земли и Луны недостаточен для возникновения даже в жидкой Земле ротационной неустойчивости (потеря вещества под действием центробежной силы).

В 60-е гг. специалисты в области небесной механики пришли к выводу, что захват Луны на околоземную орбиту – крайне маловероятное событие. Оставалась гипотеза коаккреции, которая была разработана отечественными исследователями, учениками О.Ю. Шмидта В.С. Сафроновым и Е.Л. Рускол. Ее слабая сторона – неспособность объяснить разную плотность Луны и Земли. Изобретались хитроумные, но малоправдоподобные сценарии того, как Луна могла бы потерять избыточное железо. Когда стали известны детали химического строения и состава Луны, эта гипотеза была окончательно отвергнута. Как раз в середине 1970-х гг. появился новый сценарий образования Луны. Американские ученые А.Камерон и В. Уорд и одновременно В. Хартман и Д. Дэвис в 1975 г. предложили гипотезу образования Луны в результате катастрофического столкновения с Землей крупного космического тела, размером с Марс (гипотеза мегаимпакта). В результате огромная масса земной материи и частично материала ударника (небесного тела, столкнувшегося с Землей) расплавилась и была выброшена на околоземную орбиту. Этот материал быстро аккумулировался в компактное тело, которое стало Луной. Несмотря на кажущуюся экзотичность эта гипотеза стала общепринятой, поскольку она предлагала простое решение целого ряда проблем. Как показало компьютерное моделирование, с динамической точки зрения, столкновительный сценарий вполне осуществим. Сверх того, он дает объяснение повышенному значению углового момента системы Земля – Луна, наклону оси Земли. Легко объясняется и более низкое содержание железа в Луне, так как предполагается, что катастрофическое столкновение произошло после образования ядра Земли. Железо оказалось в основном сконцентрированным в ядре Земли, а Луна образовалась из каменного вещества земной мантии.


Рис. 1 – Столкновение Земли с небесным телом размером примерно с Марс, в результате которого произошел выброс расплавленного вещества, образовавшего Луну (гипотеза мегаимпакта).
Рисунок В.Е. Куликовского.

К середине 1970-х гг., когда на Землю доставили образцы лунного грунта, достаточно хорошо были изучены геохимические свойства Луны, и она по ряду параметров действительно показывала неплохое сходство с составом земной мантии. Поэтому такие видные геохимики, как А. Рингвуд (Австралия) и Х. Венке (Германия), поддержали гипотезу мегаимпакта. Вообще, проблема происхождения Луны из разряда астрономических перешла скорее в разряд геолого-геохимических, так как именно геохимические аргументы стали решающими в системе доказательств той или иной версии образования Луны. Эти версии различались лишь в деталях: относительные размеры Земли и ударника, каков был возраст Земли, когда произошло столкновение. Сама же ударная концепция считалась незыблемой. Между тем некоторые подробности геохимического анализа ставят под сомнение гипотезу в целом.

Проблема «летучих» и изотопного фракционирования

Вопрос дефицита железа на Луне играл решающую роль при обсуждении происхождения Луны. Другая фундаментальная проблема – сверхобедненность естественного спутника Земли летучими элементами – оставалась в тени.

Луна содержит во много раз меньше K, Na и других летучих элементов по сравнению с углистыми хондритами. Состав углистых хондритов рассматривается как наиболее близкий к первоначальному космическому веществу, из которого формировались тела Солнечной системы. В качестве «летучих» мы привычно воспринимаем соединения углерода, азота, серы и воду, которые легко испаряются при прогреве до температуры 100–200 о С. При температурах 300–500 о С, в особенности в условиях низких давлений, например, при соприкосновении с космическим вакуумом, летучесть свойственна элементам, которые мы обычно наблюдаем в составе твердых веществ. Земля тоже содержит мало летучих элементов, но Луна заметно обеднена ими даже по сравнению с Землей.

Казалось бы в этом нет ничего удивительного. Ведь в соответствии с ударной гипотезой предполагается, что Луна образовалась в результате выброса расплавленного вещества на околоземную орбиту. Понятно, что при этом часть вещества могла испариться. Все бы хорошо объяснялось, если бы не одна деталь. Дело в том, что при испарении происходит явление, называемое фракционированием изотопов. Например, углерод состоит из двух изотопов 12 С и 13 С, кислород имеет три изотопа – 16 О, 17 О и 18 О, элемент Mg содержит стабильные изотопы 24 Mg и 26 Mg и т.д. При испарении легкий изотоп опережает тяжелый, поэтому остаточное вещество должно обогатиться тяжелым изотопом того элемента, который был утрачен. Американский ученый Р. Клейтон с сотрудниками показал экспериментально, что при наблюдаемой потере калия Луной отношение 41 K/ 39 K должно было бы измениться в ней на 60‰ . При испарении 40% расплава изотопное отношение магния (26 Mg/ 24 Mg) изменилось бы на 11–13‰, а кремния (30 Si/ 28 Si) – на 8–10‰. Это очень большие сдвиги, если учесть, что современная точность измерения изотопного состава этих элементов не хуже 0.5‰. Между тем никакого сдвига изотопного состава, то есть каких-либо следов изотопного фракционирования летучих в лунном веществе не обнаружено.

Возникла драматическая ситуация. С одной стороны импактная гипотеза была провозглашена незыблемой, особенно в американской научной литературе, с другой – она не совмещалась с изотопными данными.

Р. Клейтон (1995 г.) отмечал: «Эти изотопные данные несовместимы почти со всеми предложенными механизмами обеднения летучими элементами путем испарения конденсированного вещества». Х. Джонс и Х. Палме (2000 г.) заключили, что «испарение не может рассматриваться в качестве механизма, приводящего к обеднению летучими из-за неустранимого изотопного фракционирования».

Модель образования Луны

Десять лет назад я выдвинул гипотезу, смысл которой состоял в том, что Луна сформировалась не вследствие катастрофического удара, а как двойная система одновременно с Землей в результате фрагментации облака пылевых частиц. Так образуются двойные звезды. Железо, которым Луна обеднена, было утрачено вместе с другими летучими в результате испарения.


Рис. 2 – Формирование Земли и Луны из общего пылевого диска в соответствии с гипотезой автора о происхождении Земли и Луны как двойной системы.

Но может ли в действительности возникнуть такая фрагментация при тех значениях массы, углового момента и прочего, которые имеет система Земля – Луна? Это оставалось неизвестным. Несколько исследователей объединились в группу для изучения этой проблемы. В нее вошли известные специалисты в области космической баллистики: академик Т.М. Энеев, еще в 70-е г.г. исследовавший возможность аккумуляции планетных тел путем объединения пылевых сгущений; известный математик академик В.П. Мясников (к сожалению, уже ушедший из жизни); крупный специалист в области газодинамики и суперкомпьютеров член-корреспондент РАН А.В. Забродин; доктор физико-математических наук М.С. Легкоступов; доктор химических наук Ю.И. Сидоров. Позже к нам присоединился доктор физико-математических наук, специалист в области компьютерного моделирования А.М. Кривцов из Санкт-Петербурга, внесший существенный вклад в решение проблемы. Наши усилия были направлены на решение динамической задачи образования Луны и Земли.

Однако идея утраты Луной железа в результате испарения, казалось бы, находилась в таком же противоречии с отсутствием следов изотопного фракционирования на Луне, как и импактная гипотеза. На самом деле здесь наблюдалось замечательное различие. Дело в том, что изотопное фракционирование происходит, когда изотопы необратимо покидают поверхность расплава. Тогда, вследствие большей подвижности легкого изотопа возникает кинетический изотопный эффект (приведенные выше величины изотопных сдвигов обусловлены именно этим эффектом). Но, возможна другая ситуация, когда испарение происходит в закрытой системе. В этом случае испарившаяся молекула может вновь вернуться в расплав. Тогда устанавливается некоторое равновесие между расплавом и паром. Понятно, что более летучие компоненты накапливаются в паровой фазе. Но вследствие того, что существует как прямой, так и обратный переход молекул между паром и расплавом изотопный эффект оказывается очень небольшим. Это –термодинамический изотопный эффект. При повышенных температурах он может быть пренебрежимо мал. Идея закрытой системы неприменима к расплаву, выброшенному на околоземную орбиту и испаряющемуся в космическое пространство. Но она вполне соответствует процессу, протекающему в облаке частиц. Испаряющиеся частицы окружены своим паром, и облако в целом находится в условиях закрытой системы.


Рис. 3 – Кинетический и термодинамический изотопные эффекты: а) кинетический изотопный эффект при испарении расплава приводит к обогащению пара легкими изотопами летучих элементов, а расплава – тяжелыми изотопами; б) термодинамический изотопный эффект, возникающий при равновесии между жидкостью и паром. Он может быть пренебрежимо мал при повышенных температурах; в) закрытая система частиц, окруженных своим паром. Испарившиеся частицы могут вновь возвращаться в расплав.

Предположим теперь, что облако сжимается в результате гравитации. Происходит его коллапс. Тогда перешедшая в пар часть вещества выжимается из облака, а оставшиеся частицы оказываются обедненными летучими. При этом фракционирования изотопов почти не наблюдается!

Было рассмотрено несколько версий решения динамической задачи. Наиболее удачной оказалась модель динамики частиц (вариант модели молекулярной динамики), предложенная А.М. Кривцовым.

Представим, что имеется облако частиц, каждая из которых движется в соответствии с уравнением второго закона Ньютона, как известно, включающего массу, ускорение и силу, вызывающую движение. Сила взаимодействия между каждой частицей и всеми остальными частицами f включает несколько слагаемых: гравитационное взаимодействие, упругую силу, действующую при соударении частиц (проявляется на очень малых расстояниях), и неупругую часть взаимодействия, в результате которого энергия столкновения переходит в тепло.

Необходимо было принять определенные начальные условия. Решение проводилось для облака частиц, имеющего массу системы Земля – Луна, и обладающего угловым моментом, характеризующим систему этих тел. На самом деле данные параметры для первоначального облака могли несколько отличаться как в большую, так и в меньшую сторону. Исходя из удобства компьютерного расчета, рассматривалась двумерная модель – диск c неравномерно распределенной поверхностной плотностью. С целью описать поведение реально трехмерного объекта в параметрах двумерной модели вводились критерии подобия при помощи безразмерных коэффициентов. Еще одно условие: нужно было приписать частице помимо угловой некую хаотическую скорость. Математические выкладки и некоторые другие технические подробности здесь можно опустить.

Компьютерный расчет модели, основанной на приведенных принципах и условиях, хорошо описывает коллапс облака частиц. При этом формировалось центральное тело повышенной температуры. Однако не было главного. Не происходила фрагментация облака частиц, то есть возникало одно тело, а не двойная система Земля – Луна. Вообще говоря, в этом ничего неожиданного не было. Как уже упоминалось, попытки смоделировать образование Луны путем отрыва от быстро вращающейся Земли и ранее оказывались безуспешными. Угловой момент системы Земля-Луна был недостаточен для разделения общего тела на два фрагмента. То же получилось и с облаком частиц.

Однако ситуация коренным образом изменилась, когда приняли во внимание явление испарения.

Процесс испарения с поверхности частицы вызывает эффект отталкивания. Сила этого отталкивания обратно пропорциональна квадрату расстояния от испаряющейся частицы:

где λ – коэффициент пропорциональности, учитывающий величину потока, испаряющегося с поверхности частицы; m – масса частицы.

Структура формулы, характеризующей газодинамическое отталкивание, выглядит аналогично выражению для гравитационной силы, если вместо λ подставить γ - гравитационную постоянную. Строго говоря, полного подобия этих сил нет, так как гравитационное взаимодействие является дальнодействующим, а отталкивающая сила испарения – локальной. Тем не менее, в первом приближении их можно объединить:

Отсюда получается некая эффективная постоянная γ", меньшая, чем γ.

Ясно, что уменьшение коэффициента γ приведет к появлению ротационной неустойчивости при меньших значениях углового момента. Вопрос в том, каков должен быть поток испарения, чтобы требования к начальной угловой скорости облака снизились настолько, чтобы реальный угловой момент системы Земля – Луна, оказался достаточным для появления фрагментации.

Выполненные оценки показали, что поток должен быть совсем небольшим и вписываться во вполне правдоподобные значения времени и массы. А именно, для хондр (сферических частиц, из которых состоят метеориты хондриты) размером примерно 1мм, с температурой порядка 1000 К и плотностью ~ 2 г/см 3 , поток должен составлять величину примерно 10–13 кг/м 2 с. В этом случае уменьшение массы испаряющейся частицы на 40% займет время порядка (3 - 7) 10 4 лет, что согласуется с возможным порядком 10 5 лет для временной шкалы начальной аккумуляции планетных тел. Компьютерное моделирование с использованием реальных параметров отчетливо показало появление ротационной неустойчивости, завершающейся формированием двух нагретых тел, одному из которых предстоит стать Землей, а другому – Луной.


Рис. 4 – Компьютерная модель коллапса облака испаряющихся частиц. Показаны последовательные фазы фрагментации облака (а – г) и образования двойной системы (д – е). В расчете использовались реальные параметры, характеризующие систему Земля – Луна: кинетический момент K = 3.45 10 34 кг м 2 с –1 ; общая масса Земли и Луны M = 6.05 10 24 кг, радиус твердого тела с общей массой Земли и Луны Rc = 6.41 10 6 м; гравитационная постоянная "гамма" = 6.67 10 –11 кг –1 м 3 с –2 ; начальный радиус облака R0 = 5.51 Rc; число расчетных частиц N = 10 4 , значение потока испарения 10 –13 кг м –2 с –1 , отвечающее приблизительно 40% испарению массы частиц с размером хондры порядка 1 мм в течение 10 4 – 10 5 лет. Рост температуры условно показан изменением цвета от синего к красному.

Таким образом, предложенная динамическая модель объясняет возможность возникновения двойной системы Земля – Луна. При этом испарение приводит к утрате летучих элементов в условиях практически закрытой системы, обеспечивающей отсутствие заметного изотопного эффекта.

Проблема дефицита железа

Объяснение дефицита железа на Луне по сравнению с Землей (и первичным космическим веществом – углистыми хондритами) в свое время стало наиболее убедительным аргументом в пользу импактной гипотезы. Правда и здесь у импактной гипотезы имеются трудности. Действительно, Луна содержит меньше железа, чем Земля, но больше, чем земная мантия, из которой, как считается, она образовалась. Возможно, Луна унаследовала дополнительно железо ударника. Но тогда она должна быть обогащена не только железом относительно земной мантии, но и сидерофильными элементами (W, P, Mo, Co, Cd, Ni, Pt, Re, Os и др.), сопровождающими железо. В расплавах железо-силикат они присоединяются к железной фазе. Между тем Луна обеднена сидерофильными элементами, хотя в ней больше железа, чем в земной мантии. В последних моделях, чтобы согласовать ударную гипотезу с наблюдениями, все больше увеличивают массу ударника, столкнувшегося с Землей, и делается вывод о его преобладающем вкладе в состав вещества Луны. Но здесь возникает новое осложнение для импактной гипотезы. Вещество Луны, как следует из изотопных данных, строго родственно веществу Земли. Действительно, изотопные составы образцов Луны и Земли лежат на одной линии в координатах δ 18 О и δ 17 О (отношение изотопов кислорода 17 O и 18 O к 16 O). Так ведут себя образцы, принадлежащие одному и тому же космическому телу. Образцы других космических тел занимают другие линии. До тех пор, пока Луна считалась образовавшейся из вещества мантии, совпадение изотопных характеристик свидетельствовало в пользу этой гипотезы. Однако, если вещество Луны в существенной мере образовано из вещества неизвестного небесного тела, совпадение изотопных характеристик уже не поддерживает ударную гипотезу.


Рис. 5 – Сравнительное содержание железа (Fe) и окиси железа (FeO) в Земле и Луне.


Рис. 6 – Диаграмма отношений изотопов кислорода δ 17 О и δ 18 О (δ 17 О и δ 18 О – величины, характеризующие сдвиги изотопных отношений кислорода 17 О/ 16 О и 18 О/ 16 О, относительно принятого стандарта SMOW). На этой диаграмме образцы Луны и Земли ложатся на общую линию фракционирования, что указывает на генетическое родство их состава.

Сверхобедненность Луны летучими элементами и роль испарения в динамике формирования системы Земля – Луна позволяют совершенно иначе истолковать проблемы дефицита железа.

На основании нашей модели предстоит выяснить, как возникает обедненность Луны железом, и почему Луна обеднена железом, а Земля – нет, при том, что в результате фрагментации возникают два аналогичных по условиям образования тела.

Лабораторные эксперименты показали, что железо – тоже относительно летучий элемент. Если испарять расплав, который имеет первичный хондритовый состав, то после испарения наиболее легколетучих компонентов (соединений углерода, серы и ряда других) начнут испаряться щелочные элементы (K, Na), а затем наступит очередь железа. Дальнейшее испарение приведет к улетучиванию Si, за ним Mg. В конечном счете расплав обогатится наиболее трудно летучими элементами Al, Ca, Ti. Перечисленные вещества относятся к числу породообразующих элементов. Они входят в состав минералов, слагающих основную массу (99%) пород. Другие элементы образуют примеси и второстепенные минералы.


Рис. 7 – После образования двух горячих зародышей (красные пятна), значительная часть более холодного (зеленый и синий цвет) материала исходного облака частиц остается в окружающем пространстве (размеры частиц увеличены).


Примечание: Ядро Земли (учтена его масса, составляющая 32% массы планеты) содержит, помимо железа никель и другие сидерофильные элементы, а также до 10% примеси легких элементов. Это могут быть кислород, сера, кремний, с меньшей вероятностью - примеси других элементов. Данные для Луны взяты по С. Тейлору (1979). Оценки состава Луны сильно варьируют у разных авторов. Нам представляется, что оценки С. Тейлора наиболее обоснованы (Галимов, 2004).

Луна обеднена Fe и обогащена трудно летучими элементами: Al, Ca, Ti. Более высокое содержание Si и Mg в составе Луны – это иллюзия, вызванная дефицитом железа. Если утрата летучих обусловлена процессом испарения, то содержание только наиболее трудно летучих элементов останется неизменным по отношению к исходному составу. Поэтому, чтобы производить сравнение между хондритами (CI), Землей и Луной, следует отнести все концентрации к элементу, содержание которого предполагается неизменным.

Тогда отчетливо выявляется обедненность Луны не только железом, но и кремнием и магнием. Исходя из экспериментальных данных, этого следовало ожидать при существенной потере железа в процессе испарения.


А. Хашимото (1983) подвергал испарению расплав, который изначально имел хондритовый состав. Анализ его эксперимента обнаруживает, что при 40% испарения, остаточный расплав приобретает состав, почти аналогичный лунному. Таким образом, состав Луны, в том числе наблюдаемый дефицит железа, могут быть получены при образовании спутника Земли из первичного хондритового вещества. И тогда нет необходимости в гипотезе катастрофического удара.

Асимметрия роста зародышей Земли и Луны

Остается второй из заданных выше вопросов – почему Земля не обеднена железом, а также кремнием и магнием в той же степени, что и Луна. Ответ на него потребовал решения еще одной компьютерной задачи. Прежде всего, отметим, что после фрагментации и образования в коллапсирующем облаке двух горячих тел, остается большое количество вещества в окружающем их облаке частиц. Окружающая масса вещества остается холодной по сравнению с относительно высокотемпературными консолидированными зародышами.


Рис. 8 – Компьютерное моделирование показывает, что больший из образовавшихся зародышей (красный цвет) развивается гораздо быстрее и аккумулирует большую часть оставшегося исходного облака частиц (синий цвет).

Первоначально оба фрагмента, как тот, которому предстояло стать Луной, так и тот, которому предстояло стать Землей, были обеднены летучими и железом практически в одинаковой степени. Однако компьютерное моделирование показало, что если один из фрагментов оказался (случайно) несколько большей массы, чем другой, то дальнейшая аккумуляция вещества протекает крайне асимметрично. Зародыш большего размера растет гораздо быстрее. С увеличением разницы в размерах лавинообразно возрастает различие скоростей аккумуляции вещества из оставшейся части облака. В результате зародыш меньшего размера лишь немного изменяет свой состав, в то время как зародыш большего размера (будущая Земля), аккумулирует практически все первичное вещество облака и в конечном счете приобретает состав, весьма близкий к составу первичного хондритового вещества, за исключением наиболее летучих компонентов, безвозвратно покидающих коллапсирующее облако. Заметим еще раз, что утрата летучих элементов в этом случае происходит не за счет испарения в пространстве, а за счет выжимания остаточного пара коллапсирующим облаком.

Таким образом, предложенная модель объясняет сверхобедненность Луны летучими и дефицит железа в ней. Главная особенность модели –введение в рассмотрение фактора испарения, причем в условиях, исключающих или сводящих к малым величинам фракционирование изотопов. Этим преодолевается фундаментальная трудность, с которой сталкивается гипотеза мегаимпакта. Фактор испарения впервые позволил получить математическое решение развития двойной системы Земля – Луна при реальных физических параметрах. Нам представляется, что предложенная нами новая концепция происхождения Луны из первичного вещества, а не из мантии Земли, лучше согласуется с фактами, чем американская гипотеза мегаимпакта.

Предстоящие задачи

Хотя ответы на многие вопросы были получены, еще немало их остается, и встает новая крупная проблема. Она состоит в следующем. Мы в своих расчетах исходили из того, что Земля и Луна, по крайней мере их зародыши размером 2–3 тыс. км, возникли из облака частиц. Между тем существующая теория аккумуляции планет описывает образование планетных тел как результат соударения твердых тел (планетезималей) сначала метрового, потом километрового, стокилометрового и т.д. размеров. Следовательно, наша модель требует, чтобы в течение ранней стадии развития протопланетного диска в нем возникали и росли до почти планетарной массы крупные сгущения пыли, а не ансамбль твердых тел. Если это действительно так, то речь идет не только о модели происхождения системы Земля – Луна, но и о необходимости пересмотра теории аккумуляции планет в целом.

Остаются вопросы, касающиеся следующих аспектов гипотезы:

  • необходим более детальный расчет температурного профиля в коллапсирующем облаке, совмещенный с термодинамическим анализом распределения элементов в системе частица – пар на разных уровнях этого профиля (пока это не сделано, модель остается скорее качественной гипотезой);
  • следует получить более строгое выражение для газодинамического отталкивания с учетом локального характера действия этой силы в отличие от гравитационного взаимодействия.
  • в модели оставлен в стороне вопрос о влиянии Солнца, произвольно выбран радиус диска и не рассмотрено деформирующее влияние столкновения сгущений при формировании диска.
  • для получения более строгого решения важно было бы перейти к трехмерной постановке задачи и увеличить число модельных частиц;
  • необходимо рассмотреть случаи формирования двойной системы из протодиска меньшей массы, чем суммарная масса Земли и Луны, так как вполне вероятно, что процесс аккумуляции происходил в две стадии – на ранней стадии – коллапс пылевого сгущения с образованием двойной системы, а на поздней стадии – дополнительный рост за счет соударения образовавшихся к тому времени в Солнечной системе твердых тел;
  • в динамической части нашей модели остается не разработанным вопрос о причине высокого значения начального момента вращения системы Земля – Луна и заметного наклона оси Земли к плоскости эклиптики, в то время как гипотеза мегаимпакта такое решение предлагает.

Ответы на эти вопросы в значительной мере зависят от общего решения упомянутой выше проблемы эволюции сгущений в протопланетном вокругсолнечном газопылевом диске.

Наконец, следует иметь в виду, что наша гипотеза предполагает некоторые элементы гетерогенной аккреции (послойное формирование небесного тела), правда в смысле, противоположном принятому. Сторонники гетерогенной аккреции предполагали, что у планет сначала тем или иным способом образуется железное ядро, а затем уже нарастает преимущественно силикатная оболочка мантии. В нашей модели первоначально возникает зародыш, обедненный железом, и лишь последующая аккумуляция приносит обогащенный железом материал. Понятно, это существенным образом видоизменяет процесс формирования ядра и связанные с ним условия фракционирования сидерофильных элементов, и другие геохимические параметры. Таким образом, предложенная концепция открывает новые аспекты исследования в динамике формирования солнечной системы и в геохимии.